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Figure 1: We propose an image-adaptive codebook learning method, named AdaCode, for class-agnostic image restoration.
For a number of image reconstruction and restoration tasks (e.g., super-resolution and inpainting), the proposed AdaCode
achieved significantly better performance than latest prior work, such as VQGAN[7] and VQGAN with our merged ba-
sis codebooks (referred to as VQGAN-aux) for reconstruction; KX-Net[9], Real-ESRGAN[42] and FeMaSR[3] for super-
resolution; GPEN[52], MAT[19] and our trained FeMaSR[3] for image inpainting. (Zoom in for best view)

Abstract

Recent work on discrete generative priors, in the form
of codebooks, has shown exciting performance for image
reconstruction and restoration, as the discrete prior space
spanned by the codebooks increases the robustness against
diverse image degradations. Nevertheless, these methods
require separate training of codebooks for different image
categories, which limits their use to specific image cate-
gories only (e.g. face, architecture, etc.), and fail to han-
dle arbitrary natural images. In this paper, we propose
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AdaCode for learning image-adaptive codebooks for class-
agnostic image restoration. Instead of learning a single
codebook for each image category, we learn a set of basis
codebooks. Given an input image, AdaCode learns a weight
map with and computes a weighted combination of these
basis codebooks for adaptive image restoration. Intuitively,
AdaCode is a more flexible and expressive discrete genera-
tive prior than previous work. Experimental results demon-
strate that AdaCode achieves state-of-the-art performance
on image reconstruction and restoration tasks, including
image super-resolution and inpainting. Codes are released
at https://github.com/kechunl/AdaCode.
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1. Introduction
In recent years, discrete generative priors (in the form of

codebooks) [39, 7] have shown impressive performance for
image synthesis [7, 11, 45, 61], exhibiting reduced mode
collapse and more stable training. These learned codebooks
essentially provide strong priors for compressing and re-
constructing natural images, even in the presence of se-
vere degradation. Nevertheless, these methods have a com-
mon limitation. The codebooks need to be learned sep-
arately for each image category (e.g., face, architecture),
which restricts their applicability to arbitrary natural im-
ages [7, 45, 61]. Although FeMaSR [3] attempted to learn
a single general codebook for all image categories, the ex-
pressiveness of the codebook is limited by the complexity
of natural images. For example, as shown in Fig. 1, an
image often includes textural and structural contents from
multiple categories (e.g., face, man-made structural edges,
repetitive texture, natural texture). It is challenging to rely
on a single universal codebook to capture all. Prior work
such as VQGAN [7] and FeMaSR [3] often introduce no-
ticeable artifacts for image reconstruction and restoration.

t-SNE visualization of VQGAN codebook

t-SNE visualization of AdaCode codebook

VQGAN vector quantization

AdaCode vector quantization

Figure 2: Intuition of AdaCode vs a single codebook.
Top: Prior work VQGAN[7] uses a single codebook as the
learned representation in the discrete latent space, which
may not fully capture complex visual patterns. Bottom:
AdaCode learns multiple basis codebooks, each represent-
ing a different discretization of the latent space correspond-
ing to different visual appearances. For an input image, its
latent representation is a weighted linear combination of the
codes from these codebooks. AdaCode thus is a more flex-
ible representation for class-agnostic image restoration.

Is it possible to learn a class-agnostic discrete genera-
tive prior for image reconstruction and restoration? Inspired

by a recent work [55], we propose AdaCode, which learns
image-adaptive codebooks for class-agnostic image recon-
struction and restoration. Instead of learning a single code-
book for all categories of images, we learn a set of basis
codebooks. For a given input image, AdaCode learns a
weight map that determines the contribution of each ba-
sis codebook to the final representation. Intuitively, this
design allows AdaCode to learn a more flexible and ex-
pressive discrete generative prior than previous work, as
demonstrated in Fig. 2. In contrast to VQGAN [7] and
FeMaSR [3], which utilize a single partition for the latent
space and assign each image feature an exclusive discrete
representation, AdaCode learns various partitions to the la-
tent space from different perspectives – each corresponding
to the learning of one of the basis codebooks. The discrete
generative prior for an arbitrary image is a weighted linear
combination derived from these basis codebooks, resulting
in a more flexible and expressive representation. As de-
picted in Fig. 1, AdaCode outperforms previous work in
various image restoration tasks, effectively preserving scene
structure and texture.

We evaluated AdaCode on both image reconstruction
and image restoration tasks (i.e., super-resolution and image
inpainting). Across multiple benchmark datasets, AdaCode
achieved state-of-the-art performance, while maintaining a
comparable codebook size and computational cost.

2. Related Work

Visual Representation Dictionary Learning Learning
representation dictionaries in visual understanding has
demonstrated its great power in image restoration tasks
such as super-resolution [51, 62], denoising [59], and im-
age inpainting [8, 36]. Using DNNs, VQVAE [39] first
introduces a generative autoencoder model that learns dis-
crete latent representations, also known as “codebook”.
The following VQGAN [7] employs perceptual and adver-
sarial loss to train the visual codebook, resulting in bet-
ter image generation quality with a relatively small code-
book size. The representation dictionary-based generative
model has inspired various impressive image generation
work [11, 61, 53, 3, 45], as well as our AdaCode.

The use of dictionaries is not limited to image restora-
tion. Referred as lookup tables (LUTs), the dictionaries are
also applied to optimize color transforms [55, 23, 49, 50].
In 3D-LUT [55], multiple LUTs are learned to serve as the
bases of the LUT space. And a CNN is trained to predict
weights to fuse the bases into an image-adaptive LUT. In-
spired by 3D LUT, we leverage the discrete codebooks from
VQGAN as the bases of the image latent space to build our
image-adaptive codebook, AdaCode. Such design allows
our method to fully and flexibly exploit the latent codes to
represent diverse and complex natural images.
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Figure 3: The framework of the proposed AdaCode method. The training of AdaCode incorporates three stages: Class-
specific Codebook Pretraining, AdaCode Representation Learning, and Restoration via AdaCode. The lock icon indicates
that the codebooks Z1,...,K are fixed in Stage II&III, and the decoder G is fixed in Stage III. See Section. 3 for more details.

DNN-based Image Restoration DNN has been widely
used for image restoration tasks, i.e. single image super-
resolution (SISR) and image inpainting. In the field of
super-resolution (SR), recent studies focus on recovering
low-resolution input images with unknown degradation
types, which is more relevant to real-world scenarios. They
restore the images either by learning the degradation rep-
resentations [33, 21, 41, 42, 57, 9], or by training unified
generative networks with LR-HR pairs [16, 46, 32]. Some
studies introduce additional image priors, such as latent rep-
resentations [27, 2, 30] and discrete codebooks [7, 61, 3],
to address unrealistic textures or over-smoothed areas com-
monly observed in GAN-based methods. However, a single
partition of the latent space is often insufficient to model
the intricate patterns in natural images, resulting in specific
textures being generated regardless of the image content.

In the case of image inpainting, researchers often lever-
age deep generative models to fill missing image regions
with plausible content [31, 25, 44, 56, 5]. Some ap-
proaches incorporate additional discriminators [35], partial
or gated convolutions [24, 54], semantic texture or context
[28, 48, 34, 13, 38, 15], or transformers [19, 6, 26, 40] to en-
hance the quality of inpainted results. However, these meth-
ods often require separate experiments for different image
patterns, i.e. natural scenes, faces, etc., due to the significant
variations among them.

Both SR and inpainting methods face the challenge of
effectively modeling complex visual patterns with a sin-
gle model or codebook. In our proposed approach, Ada-
Code, we address this challenge by leveraging adaptive
codebooks, enabling realistic and robust restoration results
for general images.

3. Methodology

Building upon VQGAN [7], we introduce an addi-
tional degree of freedom to the codebook and construct an
adaptive codebook (AdaCode) to model the intricate high-
resolution natural image patterns. We summarize the Ada-
Code model in Fig.3. Our method’s overall training consists
of three sequential stages. In the first stage (Sec 3.1), we
divide our HQ dataset into multiple semantic subsets and
train a class-specific VQGAN [7] on each subset. In the
second stage, using the fixed pretrained class-specific code-
books as bases, we leverage a transformer block to gener-
ate weight maps and train the AdaCode through the self-
reconstruction task (Sec 3.2). In the last stage (Sec 3.3), we
employ the AdaCode with fixed codebooks and fixed im-
age decoder to address downstream restoration tasks, e.g.
Super-Resolution and Image Inpainting. The details of each
stage are discussed in the following sections.

3.1. Codebook Pretraining (Stage I)

Diversify Basis Codebooks To enhance the expressive-
ness of AdaCode, we aim to diversify the basis codebooks.
Rather than applying various initializations as 3D-LUT
[55], we achieve codebook divergence by training them on
different HR subsets of our dataset. To accomplish this, we
utilize an off-the-shelf SegFormer model [47] to perform
semantic segmentation with 150 classes from the ADE20K
dataset [60]. Each HR patch is labeled according to the se-
mantic class with the largest area. We then group the 150
classes into 5 super-classes: Architectures, Indoor objects,
Natural scenes, Street views, Portraits, and obtain the 5 se-
mantic HR subsets accordingly. It is worth noting that the
separation of subsets is not rigorous and each subset may
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Figure 4: Visualization of the learned codes for different
categories of visual appearance. We randomly sample 10
code entries from each codebook and visualize them by pro-
jecting a tiled 4×4 feature map onto a 32×32 texture patch
using the corresponding decoder. As expected, the codes
from different categories exhibit distinct features.

contain semantic contexts from other subsets, as most im-
ages contain multiple semantics. More details regarding the
clustering of the 150 classes can be found in the Appendix.
This approach not only diversifies the codebooks but also
provides various ways to partition the latent feature space.
We randomly visualize some code samples in Fig. 4.

Learning Basis Codebooks Given a HQ subset of class
k, we train a quantized autoencoder to learn the class-
specific basis codebook. As shown in Fig. 3, the input HR
patch y ∈ RH×W×3 is first passed through the encoder E to
generate the embedding ẑ = E(y) ∈ Rh×w×nz . Following
VQVAE [39] and VQGAN [7], each entry ẑi ∈ Rnz in ẑ
is replaced with its nearest code in the learnable codebook
Zk ∈ RN×nz to construct the quantized embedding zqk :

zqk = argmin
c∈{0,...,N−1}

||ẑ − Zk,c|| (1)

where N is the number of codes in the corresponding code-
book, zqk denotes the quantized representation using Zk,
and Zk,c represent the c-th entry in codebook Zk. After
the feature quantization, the decoder G reconstructs the HR
patch ŷ using zqk :

ŷ = G(zqk) ≈ y (2)

The adversarial learning scheme is employed to train the en-
coder E, codebook Z, and decoder G with the discriminator
D. The detailed architectures of E, D, and G are provided
in the Appendix.

Training Objective To train the quantized autoencoder,
we adopt 3 image-level losses: L1 loss L1, perceptual loss
Lper [17], and adversarial loss Ladv [10], which are calcu-
lated using ŷ and y.

Since the quantization in Eqn. 1 is non-differentiable,
we adopt the straight-through gradient estimator in [39, 7],

which directly copies the gradients from decoder G to en-
coder E, enabling back-propagation and allowing end-to-
end training using the code-level loss function LV Q:

LV Q(E,G,Zk) = ||sg[ẑ]− zq||22 + β · ||ẑ − sg[zq]||22 (3)

where sg[·] denotes the stop-gradient operation and β =
0.25 is a hyper-parameter to control the update frequency
of the codebook.

To further reinforce the semantics in the latent codebook
and improve the texture restoration [43], we incorporate a
VGG19-based regularization term Lsem into the codebook
training process, following the approach in [3].:

Lsem = ||CONV (ẑ)− Φ(y′k)||22 (4)

where Φ denotes the feature extractor of VGG19 [37], and
CONV denotes a single convolutional layer to match the
dimension of ẑ and Φ(y′k).

With the above image-level and code-level losses, we
can summarize the training objective in Stage I as:

Lstage1 = L1 + Lper + λ · Ladv + LV Q + λ · Lsem (5)

where the loss weight λ is set to 0.1.

3.2. AdaCode Representation Learning (Stage II)

Given the pretrained class-specific basis codebooks
Zk, k ∈ {1, ...,K}, the latent feature space can be par-
titioned into non-overlapping cells in K different ways.
Specifically, for a given input HR patch y, K quantized rep-
resentations can be generated. Each distinct quantized rep-
resentation zqk obtains its code token from its correspond-
ing semantic codebook. To combine the discrete representa-
tion zq1,...,K into the AdaCode representation z, we employ
a weight predictor module, which generates a K-channel
weight map w ∈ Rh×w×K , as illustrated in Fig. 3 and Fig.
5. The weight predictor module consists of four residual
swin transformer blocks (RSTBs) [20] and a convolution
layer to match the channels of weight map and K. z is
computed following Eqn. 6. Finally, the adaptive feature z
is reconstructed to HR patch ŷ via the decoder G.

z =
∑
i

wi × zqi (6)

To efficiently train AdaCode and maintain a comparable
number of parameters in the codebooks to VQGAN [7] and
FeMaSR [3], which both set the codebook dimension to be
1024 × 512, we set each of our class-specific codebooks
to be 256 × 256 or 512 × 256. These codebooks are fixed
during the training of stage II while the rest of the model,
i.e. the encoder E, the weight predictor, the decoder G, and
the discriminator D, are trained using the objective in Eqn.
7. Each term in this equation is defined in Sec. 3.1.

Lstage2 = L1 + Lper + λ · Ladv + LV Q(E,G) (7)
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Figure 5: An example showing the learned weight maps.
The input image contains multiple semantically-meaningful
content (e.g. pyramid, person, animal, sky) which cannot be
well represented with a single codebook. Instead, AdaCode
uses multiple basis codebooks and weight maps for discrete
representations. As shown, the weight maps correlate to the
semantics to some extent.

3.3. Restoration via AdaCode (Stage III)

With the powerful decoder G, various image restora-
tion tasks can be turned into a feature refinement problem
through AdaCode scheme. From the perspective of latent
space partition, each representation of the degraded input
x is pulled towards its nearest HR code entry, allowing for
the information loss in x to be relatively compensated. In
comparison to the quantized representation zq using only
one general codebook, the combination of zq1,...,K with the
weight map can be considered as adding an offset to zq . The
offset helps to alleviate the discontinuity among the discrete
codes, which is demonstrated in our ablation study. To fur-
ther showcase the effectiveness of AdaCode, we train our
model on two ill-posed problems, i.e. Single Image Super-
Resolution and Image Inpainting.

In super-resolution and image inpainting tasks, the map-
ping between the input and the HR output has more than
one solutions. Despite the benefits of the AdaCode scheme,
restoring damaged content or missing details remains chal-
lenging given the uncertain degradations and the diversity
of natural images. To better account for the degradation and
improve the gradient flow, we adopt the encoder design in
[3] which utilizes a feature extraction module and a residual
shortcut module during stage III.

Thanks to the excellent reconstruction model in stage
II, given a Degraded-HR image pair, we can obtain the
groundtruth representation zgt via the fixed model. Since
the decoder G is fixed in this stage, the restoration problem
can be formulated as minimizing the distance between HR
feature zgt and degraded feature z. To achieve this, we use
a code-level loss that includes the InfoNCE loss in [29] and
the style loss in [17]. Following the design as SimCLR[4],

given a degraded image feature z, we use the HR feature zgt
as the positive sample, while other zgt and z from different
source images in the same batch are treated as the negative
samples. The code-level loss is defined as follows.

Lcode = LInfoNCE(zgt, z) + Lstyle(zgt, z)

+ β · ||ẑ − sg[zgt]||22
(8)

And the overall loss is summarized as:

Lstage3 = L1 + Lper + λ · Ladv + Lcode (9)

4. Experiments
Datasets Our training dataset includes images from
DIV2K train set [1], Flickr2K [22], DIV8K train set [12],
and 10,000 face images from FFHQ [18]. We generate the
training patches by cropping images into non-overlapping
patches at 512 × 512 resolution (face images in FFHQ are
randomly resized with scale factors between [0.5, 1.0] be-
fore cropping). We adopt the same degradation model as
BSRGAN [57] to generate LR patches. The final training
dataset consists of 198,061 patches.

In the test stage, we evaluate the reconstruction task on
OST dataset [43], which contains 300 images with rich tex-
tures. For super-resolution, we evaluate the performance
on five classical benchmarks, i.e. Set5, Set14, BSD100, Ur-
ban100, and Manga109, with ×2 and ×4 scales. For image
inpainting, we apply a publicly available script [52] to ran-
domly draw irregular polyline masks and generate masked
images. The inpainting performance is evaluated on the val-
idation sets of DIV2K [1] and DIV8K [12].

Evaluation Metrics For reconstruction, we adopt PSNR
and SSIM as the evaluation metrics. For super-resolution,
we employ an additional well-known perceptual score,
LPIPS [58]. For image inpainting task, we use PSNR,
LPIPS and a widely-used non-reference metric, FID [14].

Inplementation Details According to the size of each se-
mantic dataset, we empirically set the codebook bases sizes
to be {512, 256, 512, 256, 256}× 256 for Architectures, In-
door Objects, Natural Scenes, Street Views, and Portraits.
For all stages, we represent the input image as a 32 × 32
code sequence. We train each stage for 350k iterations with
an Adam optimizer and a batch size of 32. The learning
rates for the generator and discriminator are fixed as 1e-4
and 4e-4 separately. Our method is implemented with Py-
Torch and trained with 4 NVIDIA Tesla V100 GPUs.

4.1. Expressiveness of AdaCode

The key design in our work is to leverage the class-
specific basis codebooks to construct an adaptive codebook,
which supports more expressiveness even with a smaller
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Figure 6: Qualitative comparisons on image reconstruction task. Various scenes and semantics, i.e. text, plants, buildings,
streets, and faces, are covered in these examples. Benefited from the adaptive codebook, our AdaCode is able to reconstruct
images with higher quality and fidelity. (Zoom in for best view)

codebook size. To verify our method’s superiority, we eval-
uate the reconstruction performances using three codebook
and model settings: (1) VQGAN [7] with its single general
codebook. (2) VQGAN with a merged codebook concate-
nating all the basis codebooks, referred to as VQGAN-aux.
(3) AdaCode with our adaptive codebook. The three ap-
proaches are trained with the same dataset (see Section. 4)
to guarantee a fair comparison.

Table 1: Quantitative comparison of reconstruction per-
formance. PSNR/SSIM↑: the higher, the better.

Method
Overall

Codebook Size
Performance

PSNR SSIM
VQGAN[3] 1024× 512 21.3557 0.5664

VQGAN-aux 1792× 256 21.9219 0.6030
AdaCode (Ours) 1792× 256 25.7629 0.7705

As shown in Table. 1, our AdaCode obtains overwhelm-
ing reconstruction results with a comparable or smaller
codebook size. The gap between (1) and (2) certifies that
training class-specific codebooks helps the codes to capture
more image textures, while the great improvement between

(2) and (3) justifies the expressiveness facilitated by our
adaptive codebook design. Fig. 6 shows multiple scenar-
ios, including plants, buildings, streets, portraits, and text
which has distinct patterns but does not have a correspond-
ing codebook in our experiments. AdaCode achieves ex-
ceedingly excellent results in all semantic cases, producing
realistic and fidelitous reconstruction results.

4.2. Benchmarking Image Restoration Results

Super-Resolution We compare AdaCode with state-of-
the-art models for Image Super-Resolution, including KX-
Net[9], Real-ESRGAN [42], and FeMaSR[3]. Specifically,
KX-Net iteratively learns the degradation kernels from the
LR images; Real-ESRGAN learns super-resolution using
pure synthetic data with high-order degradation model; Fe-
MaSR utilizes a single perceptually rich codebook to restore
the images. We use the original codes and weights from
each method’s official public repository to conduct compar-
isons, as shown in Table. 2 and Fig. 7.

Image Inpainting We compare AdaCode with state-of-
the-art inpainting methods GPEN [52] and MAT [19]. To
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Figure 7: Qualitative comparisons on super-resolution task with ×2 and ×4 upscale factor. AdaCode restores LR with
realistic and faithful details, while the competitive work either fails to deblur the LR, i.e. KX-Net [9], or generates artifacts
or over-smooth areas,i.e. Real-ESRGAN [42] and FeMaSR [3]. See Appendix for more results. (Zoom in for best view)

Table 2: Quantitative comparison with state-of-the-art SISR methods. PSNR/SSIM↑: the higher, the better; LPIPS↓: the
lower, the better. The best and second best performance are marked in red and blue.

Method Scale
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

FeMaSR x2 27.513 0.8250 0.1054 25.404 0.7565 0.1292 24.907 0.7260 0.1449 22.713 0.7573 0.1102 21.584 0.6938 0.2270

KX-Net x2 27.837 0.8884 0.0859 25.929 0.8291 0.1301 25.818 0.8092 0.1734 22.675 0.8016 0.0972 19.561 0.5049 0.5312

Real-ESRGAN x2 30.032 0.8930 0.1051 27.019 0.8379 0.1382 26.670 0.7916 0.1526 23.577 0.8115 0.0976 20.815 0.6817 0.3056

Ours x2 29.213 0.8444 0.0844 26.249 0.7702 0.1179 26.038 0.7529 0.1374 23.663 0.7894 0.1009 22.023 0.7029 0.2150

FeMaSR x4 24.039 0.7452 0.1500 22.724 0.6354 0.2045 21.957 0.5819 0.2517 20.509 0.6426 0.1983 18.131 0.5757 0.3449

KX-Net x4 21.922 0.7050 0.2080 21.182 0.6126 0.3044 21.708 0.5768 0.3972 18.603 0.5576 0.2704 18.181 0.5323 0.6909

Real-ESRGAN x4 25.263 0.7665 0.1710 24.100 0.7004 0.2338 23.776 0.6261 0.2819 21.351 0.6625 0.2140 18.222 0.5917 0.4091

Ours x4 25.868 0.7731 0.1505 24.158 0.6662 0.2031 23.129 0.6041 0.2485 21.446 0.6568 0.2007 18.145 0.5664 0.3425

conduct a fair comparison, we retrain MAT on our train-
ing dataset as discussed in Section. 4. Moreover, we train
FeMaSR [3] for this task to demonstrate the effectiveness
of our adaptive codebooks over the single codebook in Fe-
MaSR. As shown in Table. 3, AdaCode achieves state-of-
the-art performance on various metrics. Qualitative com-
parisons in Fig. 8 also illustrate that AdaCode consistently
produce high-quality inpainting results across a wide range
of scenes with a single model.

4.3. Ablation Study

We investigate AdaCode’s expressiveness given a vari-
ous number of basis codebooks. We fix the five basis code-
books trained in Stage I and train Stage II with various com-
binations of basis codebooks. We adopt PSNR and SSIM
to evaluate the expressiveness on the reconstruction task.
Fig. 9 empirically shows that the adaptive codebook ben-
efits from the bases in a large extent. Meanwhile, it also
indicates that our basis codebooks are “non-multicollinear”

Table 3: Quantitative comparison with state-of-the-art
inpainting methods. PSNR↑: the higher, the better;
LPIPS/FID↓: the lower, the better. The best and second
best performance are marked in red and blue.

Method
DIV2K DIV8K All

PSNR LPIPS PSNR LPIPS FID

GPEN 29.129 0.0933 31.191 0.0703 3.0924

FeMaSR 29.790 0.0581 32.233 0.0416 1.6741

MAT 30.124 0.0676 32.335 0.0406 1.2385

Ours 30.1151 0.0516 32.701 0.0372 1.1657

even if the semantic sub-datasets have overlapping patches.

5. Conclusion and Limitation

In this work, we propose AdaCode, a novel approach for
class-agnostic image reconstruction and restoration. In par-
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Figure 8: Qualitative comparisons on image inpainting task. The first two rows demonstrate the inpainting results of face
images, while the last two rows show the recovered results of place images. See Appendix for more results.

Figure 9: Ablation Study. PSNR and SSIM score of recon-
structed results with varying number of basis codebooks.
See supplementary for more result images.

ticular, we train a set of class-specific basis codebooks and
learn a weight map to construct an image-adaptive code-
book for better image representation. Unlike previous meth-
ods that use a general codebook to represent images, our
image-adaptive codebook is more flexible and suited for
natural images. Extensive comparisons on image recon-
struction, super-resolution, and image inpainting tasks vali-
date our method’s superiority.

Our work is a first step towards class-agnostic genera-
tive prior for arbitrary images. It has several limitations
we plan to explore in future work. First, it is yet unclear
how many basis codebooks and how many code entries in
each codebook we need. Stage I is trained separately from
Stage II&III, which may be suboptimal. Second, we do
not yet incorporate high-level explicit semantic information
such as semantic segmentation into the framework, which
may be also useful for general image restoration tasks. Fi-
nally, it would be interesting to extend AdaCode for high-
dimensional visual appearance, such as videos and multi-
spectral images.
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